Properties of classical model

- Classical dichotomy
- Always efficient equilibrium
- Inflation does not matter in basic model
- Money in the utility function
 - Zero nominal interest rate
 - Inflation = minus real interest rate
- Productivity the driving force

Keynesian perspective

- Sticky prices
 - Takes time to adjust prices
 - Disequilibrium, not in steady state
- Market form
 - Non-competitive
 - Why not adjust prices?
 - Adjustment cost
 - Attention/information

Non-competitive markets

- Welfare improvements can be achieved through policy
- Steady state output level too low
- Cooperation => non-competitive, e.g. bilateral monopoly => lower transaction costs => welfare?

Sticky prices

- Practice
 - Empirical studies
 - Time series models
 - Structural models
 - Survey methods
 - Interviews
- Theory
 - Models
 - Time dependent
 - State dependent

Practice

- Main results from different studies, vary somewhat but some robust:
- · Time or state dependent pricing
 - Both very common
- Implicit and explicit contracts
- Low variability in costs
- Differences across goods
 - goods/services
 - homogenous/heterogenous
 - producer/consumer
- Downward/upward rigidity no big differences
- Menu costs not so important
- Kinked demand curve (fear to loose customers)

Frequency of price changes

- Euro
 - CPI average duration 13 months
- Sweden
 - 27% change less than once a year
- USA
 - 50% of prices last less then 5.5 months (Bils and Klenow)
 - Blinder: Median firm once a year
- Prices more sticky in Europe than in the US

Aggregate price rigidity

$$V \equiv P \cdot Y$$

$$v \equiv p + y$$
Define $\hat{y}^* \equiv \text{trend output}$
Define $\hat{y} \equiv y - y^*$ output gap
Define $\hat{v} \equiv v - y^*$ nominal shock
$$p = \alpha \hat{v} \rightarrow \hat{y} = (1 - \alpha)\hat{v}$$

$$p_t = \sum_{i=0}^n \alpha_i \hat{v}_{t-i} + \varepsilon_t$$

lpha and the effects of shocks

- High inflation => shorter contracts => more flexible prices
- Low inflation regimes 1990s and onwards => longer contracts
- Real effects of monetary shocks larger in the later period

Country	α first five quarters	α second year	α after two yea
Austria 1972:2 – 1989:4	0.612	0.340	0.952
Belgium 1963:2 – 1989:4	0.898	0.094	0.992
Canada 1963:2 – 1989:4	0.689	0.274	0.963
Denmark 1979:2 – 1989:4	0.535	0.116	0.651
Finland 1977:2 – 1989:4	0.616	0.410	1.026
France 1967:2 – 1989:4	0.724	0.191	0.915
Germany 1967:2 – 1989:4	0.504	0.307	0.811
Greece 1963:2 - 1989:4	1.026	0.000	1.026
Ireland 1963:2 – 1989:4	0.939	0.050	0.989
Italy 1972:2 – 1989:4	0.911	0.115	1.026
Japan 1967:2 – 1989:4	0.988	0.059	1.047
Netherlands 1979:2 – 1989:4	0.784	0.083	0.867
Portugal 1963:2 – 1999:1	0.873	0.085	0.958
Spain 1972:2 – 1989:4	0.952	0.156	1.108
Sweden 1963:2 – 1989:4	0.681	0.301	0.982
United Kingdom 1965:2 – 1989:4	1.013	-0.030	0.983
USA 1963:2 – 1989:4	0.443	0.428	0.871

	for selected countries		
Country	α first five	α second year	α after two years
	quarters		
Austria	0.703	0.422	1.125
1990:1 - 1999:1			
Belgium	0.321	0.281	0.603
1990:1 - 1998:4			
Canada	0.358	0.446	0.804
1990:1 - 1999:1			
Denmark	0.665	0.323	0.989
1990:1 - 1999:1			
Finland	0.266	0.283	0.549
1990:1 - 1998:4			
France	0.293	0.384	0.677
1990:1 - 1999:1	1	1	
Germany	0.486	0.294	0.780
1990:1 - 1999:1			1
Greece	0.624	0.540	1.164
1990:1 - 1998:4	1	1	
Ireland	0.083	-0.513	-0.429
1990:1 - 1998:4	0.003	0.515	0.125
Italy	0.688	0.307	0.995
1990:1 - 1999:1	0.000	0.507	0.555
Japan	0.192	0.671	0.863
1990:1 - 1999:1	0.152	0.071	0.003
Netherlands	0.143	0.160	0.303
1990:1 - 1998:4	0.143	0.100	0.303
Portugal	0.668	0.239	0.907
1990:1 - 1999:1	0.000	0.239	0.907
Spain	0.888	0.187	1.075
1990:1 - 1999:1	0.000	0.107	1.075
Sweden	0.401	0.390	0.791
	0.401	0.390	0.791
1990:1 - 1998:4	0.458	0.744	1.202
United Kingdom	0.438	0.744	1.202
1990:1 - 1999:1	0.701	0.474	1.176
USA	0.701	0.474	1.175
1990:1 - 1999:1			

Empirical results

- The flexibility parameter for the first 5 quarters varies between 0.5 and 1 and for the second year (quarters 6-9) between 0 and 0.4
- The price adjustment is approximately complete () after two years for almost all countries
- prices are more flexible in the earlier than in the later period for most of the countries

Consequences

- Contract length in low inflation regime
- Monetary shocks more important for real variables in low inflation regime
- Increased stickiness => relative price dispersion => resource allocation

Sticky price

- Benefits
 - Customer relationships
 - Heterogenous goods/adapted to buyers
 - Investments in customer relationships
 - Reduction in search costs
- External economies/diseconomies
 - Sticky price => aggregate price rigidity => resource allocation

NKPC

- Basic new Keynesian model
 - Does not generate enough inflation persistence
 - This is accomplished by ad hoc persistence in the stochastic shocks

Basic New Keynesian Model

- Consumer the same as in the classical model
- Monetary policy different effects
- MP could possibly affect resource allocation if prices are sticky

- Imperfect competition
- Each firm produces a differentiated good
- Only some of the firms can change the price (optimize)

Households

$$E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, N_t)$$

max expected discounted utility

$$E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, N_t)$$

$$C_t = \left(\int_0^1 C_t(i)^{1 - \frac{1}{\varepsilon}} di \right)^{\frac{\varepsilon}{\varepsilon - 1}}$$

consumption index

$$\int_0^1 \! P_{\scriptscriptstyle t}(i) C_{\scriptscriptstyle t}(i) di + Q_{\scriptscriptstyle t} B_{\scriptscriptstyle t} \leq B_{\scriptscriptstyle t-1} + W_{\scriptscriptstyle t} N_{\scriptscriptstyle t} + T_{\scriptscriptstyle t} \qquad \qquad \text{budget constraint}$$

Consumers' solution

$$P_tC_t + Q_tB_t \le B_{t-1} + W_tN_t + T_t$$
 aggregate budget constraint

$$C_{t}(i) = \left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon} C_{t}$$

demand functions

Firms

$$Y_{t}(i) = A_{t}N_{t}(i)^{1-\alpha}$$
 production function

$$C_{t}(i) = \left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon} C_{t}$$
 demand functions

$$\begin{split} \log C_{t}(i) &= \log C_{t} - \varepsilon \left(\log P_{t}(i) - \log P_{t} \right) \\ c_{t}(i) &= c_{t} - \varepsilon \left(p_{t}(i) - p_{t} \right) \end{split}$$

Calvo model

- Each firm may only reset their price with probability $1-\theta$ in any given period
- 1–θ is exogenous
- In each period a fraction 1– θ of the producers reset their prices
- $\bullet\,$ a fraction θ keep them unchanged

Calvo 2

- average duration of a price is $1/1-\theta$
- θ is a measure of price rigidity

Calvo 3 aggregate price dynamics

$$P_{t} = \left[\theta \left(P_{t-1}\right)^{1-\varepsilon} + (1-\theta)\left(P_{t}^{*}\right)^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}$$

$$\prod_{t} = \frac{P_{t}}{P_{t-1}}$$
 definition

$$\prod_{t}^{1-s} = \theta + (1-\theta) \left(\frac{P_{t}^{*}}{P_{t-1}}\right)^{1-s}$$

$$\pi_{t} = (1 - \theta)(p_{t}^{*} - p_{t-1})$$

logarithmic approximation around steady state with zero inflation

Optimal price?

- The optimizing firm will choose the price P_t^*
- that maximizes the current market value of the discounted expected profits generated while that price remains effective (is not reset)

Optimal price, problem

$$\max_{P_t^*} \sum_{k=0}^{\infty} \theta^k E_t \left\{ Q_{t,t+k} \left(P_t^* Y_{t+k|t} - \psi_{t+k} \left(Y_{t+k|t} \right) \right) \right\} \qquad \psi_{t+k} \text{ cost function}$$

subject to $Y_{t+k|t}$ Output in t+k for firm that resets price at t

$$Y_{t+k|t} = \left(\frac{P_t^*}{P_{t+k}}\right)^{-s} C_{t+k}$$

$$\begin{split} Y_{t+k|t} = & \left(\frac{P_t^*}{P_{t+k}}\right)^{-s} C_{t+k} \\ Q_{t,t+k} & \equiv \beta^k \left(\frac{C_{t+k}}{C_t}\right)^{-\sigma} \left(\frac{P_t}{P_{t+k}}\right) & \text{discount factor for nominal payoffs} \end{split}$$

$$\begin{split} \log Q_{t,t+k} &= k \log \beta - \sigma \Delta y_{t+k} - \pi_{t+k} \\ \sigma &= 1 \rightarrow \log Q_{t,t+k} = k \log \beta - \left[\Delta y_{t+k} + \pi_{t+k} \right] \end{split}$$

Solution

$$p_{t}^{*} = \mu + (1-\beta\theta) \sum_{k=0}^{\infty} (\beta\theta)^{k} E_{t} \left\{ mc_{t+k|t} + p_{t+k} \right\}$$

$$\mu = \log M = \log \left(\frac{\varepsilon}{\varepsilon - 1} \right)$$
 markup

price is the desired markup over a weighted average of their current and discounted expected future nominal marginal costs, with the weights being proportional to the probability of the price remaining effective at each horizon

Equilibrium

$$Y_{t}(i) = C_{t}(i)$$

$$Y_{t} = C_{t}$$

$$N_{t} = \int_{0}^{1} N_{t}(i) di$$

Equilibrium

$$\pi_t = \beta E_t \left\{ \pi_{t+1} \right\} + \lambda \left(mc_t - mc \right) \qquad \text{Real marginal cost}$$

$$\lambda \equiv \frac{(1-\theta)(1-\beta\theta)}{\theta} \frac{(1-\alpha)}{(1-\alpha+\alpha\varepsilon)} \qquad \frac{mc_t \equiv \log(\psi_{t+k|t}) - p_t}{mc_t = -\mu_t}$$

$$\lambda = \frac{(1-0.67)(1-0.99 \cdot 0.67)}{0.67} \frac{(1-0.33)}{(1-0.33+0.33 \cdot 3)} = 0.165$$

$$\pi_t = \beta E_t \left\{ \pi_{t+1} \right\} + \lambda \left[\left(\log \psi_t - \log \psi \right) - \left(p_t - p \right) \right]$$

Interpretation

$$\pi_{t} = \beta E_{t} \left\{ \pi_{t+1} \right\} - \lambda \left(\mu_{t} - \mu \right)$$

- If markups are high (relative to steady state) then inflation is low
- Counterintuitive but depends on forwardlooking behavior

Interpretation

$$\pi_{t} = \lambda \sum_{t=0}^{\infty} \beta^{k} E_{t} \left\{ m c_{t+k} - m c \right\}$$

Expected real marginal cost high relative to steady state

Markups expected to be below steady state => inflation will be high => firms that reset price choose a price above the average price level

Output gap

$$mc_t - mc = \left(\alpha + \frac{\varphi + \alpha}{1 - \alpha}\right)(y_t - y_t^n)$$

$$\pi_t = \gamma + \beta E_t \left\{ \pi_{t+1} \right\} + \kappa \left(y_t - y_t^n \right)$$

$$\kappa = \lambda \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha} \right)$$

$$\kappa = 0.165 \left(1 + \frac{1 + 0.33}{1 - 0.33} \right) = 0.49$$

Dynamic IS equation

$$Y_t(i) = C_t(i)$$
$$Y_t = C_t$$

$$c_{t+1} = c_{t} + \frac{1}{\sigma} (i_{t} - E_{t} \{ \pi_{t+1} \} - \rho) + u_{t+1}$$

$$c_{t+1} = E_{t} \{ c_{t+1} \} + u_{t+1}$$

remember interpretation

Rewrite the consumer's Euler equation in terms of the output gap

$$\begin{split} y_{t} &= E_{t} \left\{ y_{t+1} \right\} - \frac{1}{\sigma} \left(i_{t} - E_{t} \left\{ \pi_{t+1} \right\} - \rho \right) \\ y_{t} - y_{t}^{n} &= E_{t} \left\{ y_{t+1} - y_{t+1}^{n} \right\} - \frac{1}{\sigma} \left(i_{t} - E_{t} \left\{ \pi_{t+1} \right\} - \rho \right) + E_{t} \left\{ y_{t+1}^{n} - y_{t}^{n} \right\} \\ \tilde{y}_{t} &= E_{t} \left\{ \tilde{y}_{t+1} \right\} - \frac{1}{\sigma} \left(i_{t} - E_{t} \left\{ \pi_{t+1} \right\} - r_{t}^{n} \right) \\ r_{t}^{n} &= \rho + \sigma E_{t} \left\{ \Delta y_{t+1}^{n} \right\} \end{split}$$

Real rate of interest at flexible prices, keeps output at natural level

Equilibrium

$$\begin{split} c_{\scriptscriptstyle t} &= E_{\scriptscriptstyle t} \left\{ c_{\scriptscriptstyle t+1} \right\} - \frac{1}{\sigma} \left(i_{\scriptscriptstyle t} - E_{\scriptscriptstyle t} \left\{ \pi_{\scriptscriptstyle t+1} \right\} - \rho \right) \\ i_{\scriptscriptstyle t} - E_{\scriptscriptstyle t} \left\{ \pi_{\scriptscriptstyle t+1} \right\} &= \rho + \sigma E_{\scriptscriptstyle t} \left\{ \Delta y_{\scriptscriptstyle t+1} \right\} \end{split} \text{rewrite}$$

$$r_t^n = \rho + \sigma E_t \left\{ \Delta y_{t+1}^n \right\}$$

$$= \rho + \sigma \psi_{ya}^n E_t \left\{ \Delta a_{t+1} \right\}$$

$$y_t - y_t^n = -\frac{1}{\sigma} \sum_{k=0}^{\infty} \left(r_{t+k} - r_{t+k}^n \right)$$

that the output gap is proportional to the real interest rate gap, i.e. the difference between the real interest rate and the natural interest rate.

Monetary policy

$$i_{t} = \rho + \phi_{\pi} \pi_{t} + \phi_{y} \left(y_{t} - y_{t}^{n} \right) + v_{t} \qquad \text{compare with 3-equation model of Svensson (1997)}$$

Assume

$$\phi_{\pi} = 1.5 \text{ and } \phi_{y} = 0.125$$

$$v_t = \rho_v v_{t-1} + \varepsilon_t^v \qquad \rho_v = 0.5$$

and

$$\beta$$
 < 1 \simeq 0.99

$$\rho \equiv -\log \beta \simeq 0.01$$

$$\sigma \simeq 1$$

$$\varphi \simeq 1$$

$$\alpha \simeq 0.33$$

$$\varepsilon = 6$$

$$\psi_{na}=0$$

$$v_n = -0.2$$

$$\psi_{ya} = 1$$

$$v_y = -0.13$$

monetary policy shock

and technology shock

$$a_{t} = \rho_{a} a_{t-1} + \varepsilon_{t}^{a}$$

$$\rho_a = 0.9$$

More on policy

- Optimal policy
 - Uniqeness
 - Realistic rules
 - Information requirements
 - Unobservables like flexible price output or interest rate
- Simple policy rules
 - Taylor rules
- More on this later